目的 运用网络药理学探讨萆薢活性成分抗动脉粥样硬化(atherosclerosis,AS)的作用机制并通过体外实验加以验证。方法与结果 利用中药系统药理数据库和分析平台(traditional Chinese medicine systems pharmacology database and analysis platform,TCMSP)筛选出萆薢中符合条件的2个活性成分,Swiss Target Prediction 平台预测活性成分的潜在靶点46个,利用在线人类孟德尔遗传(online Mendelian Inheritance in Man,OMIM)数据库、人类基因综合数据库(GeneCards)和靶向治疗数据库(therapeutic target database,TTD)筛选出4 698个AS的疾病靶点,Venny工具软件筛选出萆薢活性成分抗AS的交集靶标蛋白39个,Cytoscape 3.9.0 筛选出核心靶点10个。借助Gene DENOVO在线网站进行基因本体富集分析得到1 154个生物过程、37 个细胞组分和149 个分子功能相关信息,其中生物过程主要涉及脂质代谢和脂质生物合成等过程;京都基因与基因组百科全书通路富集分析得到103条信号通路,其中腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)信号通路位居首位。在体外,采用氧化低密度脂蛋白刺激THP-1源性巨噬细胞复制泡沫化模型,薯蓣皂苷元(diosgenin,DIO)各浓度组脂质蓄积程度较模型组明显减轻,泡沫细胞胆固醇含量降低,细胞脂质代谢关键酶p-AMPK活性和p-AMPK蛋白表达增加、羟甲戊二酸单酰辅酶A还原酶(3-hydroxy-3-methyl glutaryl coenzyme A reductase,HMGCR)活性及HMGCR蛋白表达明显降低。结论 网络药理学预测和体外验证提示萆薢活性成分通过激活AMPK,抑制HMGCR以减少胆固醇合成,抑制巨噬细胞泡沫化,发挥抗AS的作用。
Abstract
OBJECTIVE To investigate and verify the anti-atherosclerosis (atherosclerosis, AS) mechanism of Dioscorea hypoglauca by network pharmacology and in vitro experiments. METHODS AND RESULTS The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) was used to screen out 2 eligible active ingredients in Dioscorea hypoglauca, and the Swiss Target Prediction platform predicted the potential targets of 46 active ingredients. 4 698 atherosclerosis-related targets were obtained using the online Mendelian Inheritance in Man(OMIM), GeneCards database and the therapeutic target database(TTD). Venny tool software screened 39 cross-target proteins of Dioscorea hypoglauca anti-AS, and 10 core targets were screened by Cytoscape 3.9.0. Gene ontology enrichment analysis of core targets was carried out on the Gene DENOVO online website to obtain 1 154 biological process(BP) information, 37 cellular component(CC) information and 149 molecular function(MF) information. Among them, BP-related processes mainly involve lipid metabolism and lipid biosynthesis. The Kyoto Encyclopedia of genes and genomes pathway enrichment analysis obtained 103 signaling pathways, of which the AMP-activated protein kinase signaling pathway ranked first. In vitro, oxidized low density lipoprotein was used to stimulate THP-1-derived macrophages to replicate the foam cell model, and the degree of lipid accumulation in diosgenin (DIO) concentration groups was significantly reduced compared with the model group, and the content of cholesterol in foam cells was decreased. The activity of p-AMPK, a key enzyme of lipid metabolism, and the expression of p-AMPK protein increased while 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR) activity and HMGCR protein expression decreased significantly. CONCLUSION The network pharmacology prediction and in vitro verification suggest that the active ingredients of Dioscorea hypoglauca play an anti-AS role by activating AMPK, inhibiting HMGCR to reduce cholesterol synthesis and inhibiting macrophage foam.
关键词
网络药理学 /
体外实验 /
薯蓣皂苷元 /
动脉粥样硬化 /
腺苷酸活化蛋白激酶 /
脂质代谢
{{custom_keyword}} /
Key words
network pharmacology /
experimental verification /
diosgenin /
atherosclerosis /
AMP-activated protein kinase /
lipid metabolism
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SHIFA J B, UNAI G G, ASIER L S, et al. Pathophysiology of atherosclerosis[J]. Int J Mol Sci,2022,23(6):3346. Doi: 10.3390/ijms23063346.
[2] GISELA M O, RAMOS C, MARQUES ARA, et al. Cell senescence, multiple organelle dysfunction and atherosclerosis[J]. Cells, 2020,9(10):2146. Doi: 10.3390/cells9102146.
[3] Chinese Medical Association. Guidelines for primary diagnosis and treatment of dyslipidemia (2019). Chin J Gen Pract(中华全科医师杂志),2019(5):406-416.
[4] STROES E S, THOMPSON P D, CORSINI A, et al. Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management[J]. Eur Heart J, 2015;36(17):1012-1022.
[5] ZHU L C. Zhu Liangchun Medical Collection(朱良春医集) [M]. Changsha: Central South University Press, 2006:281.
[6] WANG P, HE L Y, SHEN G D, et al. Inhibitory effects of Dioscin on atherosclerosis and foam cell formation in hyperlipidemia rats[J]. Inflammopharmacology.2017,25(6):633-642.
[7] WU F C. Effects of diosgenin and its derivatives on atherosclerosis[J]. Food Funct, 2019,10(11):7022-7036.
[8] WANG S R,LING S,ZHANG Q G, et al. The research progress of nanomedicine for immunomodulation therapy[J]. Chin Pharmacol Bull (中国药理学通报),2017,33(2):161-166.
[9] BISWAS D, NAZIR R, BISWAS P, et al. Endophytic sources of diosgenin, a natural steroid with multiple therapeutic valuess[J]. S Afr J Bot,2020,134:119. Doi:10.1016/j.sajb.2020.04.009.
[10] LI G Y, ZHANG H, LI L, et al. Effects of total saponin of Dioscorea on blood lipid regulation and anti-atherosclerosis in animol model[J]. Chin Pharm J(中国药学杂志), 2021,56(23):1899-1905.
[11] WANG C, ZHANG M, ZHAO L P, et al. Study on the anti atherosclerosis mechanism of astragalus membranaceus based on network pharmacology[J]. Chin Tradit Pat Med(中成药),2022,44(3):987-994.
[12] GAO F F, PEI Y L,REN Y, et al. Possible mechanisms by which Polygonati rhizoma opposes atherosclerosis based on network pharmacology and molecular docking analyses [J]. Acta Pharm Sin(药学学报),2020,55(11):2642-2650.
[13] TANG Y,LI M,WANG J, et al. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks[J]. Biosystems, 2015,127:67-72.
[14] LI G Y,ZHANG W Z, JIANG L, et al. Effect of total saponin of dioscoreae collettii rhizoma on toll-like receptor/nuclear factor-κB (TLR/NF-κB) signaling pathway induced by monosodium urate in THP-1 cells[J]. Chin J Exp Tradit Med Form(中国实验方剂学杂志), 2020,26(5):34-41.
[15] YUAN L, LIANG X X, LUO Y, et al. Chikusetsu saponin Ⅳa mitigate foam production of THP-1 derived macrophages[J]. Chin J Clin Pharmacol(中国临床药理学杂志),2022,38(10):1051-1054.
[16] LIU Z T, ZHAO W, CHEN F, et al. Salusin-α inhibits THP-1 derived foam cell formation via PPARγ Pathway[J]. J Huazhong Univ Sci Technol, Health Sci(华中科技大学学报 医学版),2019,48(3):268-275.
[17] LIU Y B, QIN J J, YANG S H, et al. Effects of rehmanniae extracts against atherosclerosisin mice and“IL-34”-Rho/Rock Pathway in vitro[J]. Chin Pharm J(中国药学杂志),2019,54(8):624-631.
[18] ZHANG R, LI X G, CHEN Y B, et al. Rab18 down-regulates PLIN2 through PPARγ to reduce lipid accumulation in macrophages[J]. Chin J Pathophysiol(中国病理生理杂志),2021,37(8):1367-1375.
[19] GUPTA M, BLUMENTHAL C, CHATTERJEE S, et al. Novel emerging therapies in atherosclerosis targeting lipid metabolism[J]. Expert Opin Investig Drugs,2020 29(6):611-622.
[20] ZHANG S, HONG F, MA C, et al. Hepatic lipid metabolism disorder and atherosclerosis[J]. Endocr Metab Immune Disord Drug Targets,2022,22(6):590-600.
[21] BORÉN J, TASKINEN M R, BJÖRNSON E, et al. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia[J]. Nat Rev Cardiol,2022,19(9):577-592.
[22] ZAMBON A, AVERNA M, D′ERASMO L, et al. New and emerging therapies for dyslipidemia[J]. Endocrinol Metab Clin North Am,2022,51(3):635-653.
[23] XUE F, XUE M M. The role of AMPK(AMP-activated protein kinase)in atherosclerosis [J]. J Dis Monit Control(疾病监测与控制),2016,10(2):120-122.
[24] GARCIA D, SHAW RJ. AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance[J]. Mol Cell,2017,66(6):789-800.
[25] ASLAM M, LADILOV Y. Emerging role of cAMP/AMPK signaling[J]. Cells, 2022, 11(2):308. Doi: 10.3390/cells11020308.
[26] DAY E A, FORD R J, STEINBERG G R. AMPK as a therapeutic target for treating metabolic diseases[J]. Trends Endocrinol Metab,2017,28(8):545-560.
[27] WANG Q, LIU S, ZHAI A, et al. AMPK-mediated regulation of lipid metabolism by phosphorylation[J]. Biol Pharm Bull, 2018,41(7):985-993.
[28] HEIDARY M R, SAMIMI Z, ASGARY S, et al. Natural AMPK activators in cardiovascular disease prevention[J]. Front Pharmacol,2022,12:738420. Doi:10.3389/fphar.2021.738420.
[29] HAN J S, SUNG J H, LEE S K. Inhibition of cholesterol synthesis in HepG2 cells by GINST-decreasing HMG-CoA reductase expression via AMP-activated protein kinase[J]. J Food Sci,2017,82(11):2700-2705.
[30] WANG D, WANG X. Diosgenin and its analogs: potential protective agents against atherosclerosis[J]. Drug Des Dev Ther,2022,16:2305-2323. Doi:10.2147/DDDT.S368836.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目资助(81573670)
{{custom_fund}}